
Supercharge PBCS with
PowerShell
Last year I presented an in-depth overview on PowerShell and
how it can be utilized in the Hyperion environment. I have
been asked many times to share it. The presentation is a
technical presentation and is meant to provide a strong
introductory level foundation for anybody that wants to start
using PowerShell to automate repetitive tasks. I have built a
large library of shared functions that can be used to automate
PBCS and ePBCS, and I plan to share pieces of this in future
posts.

For now, anybody that is interested in learning PowerShell, or
has used it and doesn’t know why some things work and others
don’t, this might prove to be a valuable resource.

Remove Dimensions From
Planning LCM Extracts

Problem
I am currently working with a client that is updating a
planning application and one of the changes is to remove a
dimension. After the new application was setup and the
hierarchies were modified to meet the objectives, migrating
artifacts was the next step. As many of you know, if you try
to migrate web forms and composite forms, they will error

http://www.in2hyperion.com/2018/02/04/supercharge-pbcs-with-powershell/
http://www.in2hyperion.com/2018/02/04/supercharge-pbcs-with-powershell/
http://www.in2hyperion.com/2016/12/10/remove-dimensions-from-planning-lcm-extracts/
http://www.in2hyperion.com/2016/12/10/remove-dimensions-from-planning-lcm-extracts/

during the migration due to the additional dimension in the
LCM file. It wouldn’t be a huge deal to edit a few XML files,
but when there are hundreds of them, it is extremely time
consuming (and boring, which is what drove me to create this
solution).

Assumptions
To fully understand this article, a basic understanding of XML
is recommended. The example below assumes an LCM extract was
run on a Planning application and it will be used to migrate
the forms to the same application without a CustomerSegment
dimension. It is also assumed that the LCM extract has been
downloaded and decompressed.

Solution
I have been learning and implementing PowerShell scripts for
the last 6 months and am overwhelmed by how easy it is to
complete complex tasks. So, PowerShell was my choice to
modify these XML files in bulk.

It would be great to write some long article on how smart this
solution is and overwhelm you with my whit, but there is not
much too it. A few lines of PowerShell will loop through all
the files and remove the XML tags related to a predefined
dimension. So, let’s get to it.

Step 1 – Understand The XML
There are two folders of files we will look to. Forms are
under the plan type and the composite forms are under the
global artifacts. Both of these are located inside the
resource folder. If there are composite forms that hold the
dimension in question as a shared dimension, both will need to
be impacted. Scripts will be included to update both of these
areas.

Inside each of the web form files will be a tag for each
dimension, and it will vary in location based on whether the
dimension is in the POV, page, column, or row. In this
particular example, the CustomerSegment dimension is in the
POV section. What we want to accomplish is removing the
<dimension/> tag where the name attribute is equal to
CustomerSegment.

For the composite forms, the XML tag is slightly different,
although the concept is the same. The tag in composite form
XML files is <sharedDimension/> and the attribute is
dimension, rather than name.

Step 2 – Breaking Down the PowerShell
The first piece of the script is just setting some environment
variables so the script can be changed quickly so that it can
be used wherever and whenever it is needed. The first
variable is the path of the Data Forms folder to be executed
on. The second is the dimension to be removed.
[crayon-5b272f4935466138635192/]
The next piece of the script is recursing through the folder
and storing the files in an array. There is a where statement
to exclude directories so the code only executes on files.
[crayon-5b272f4935475794073537/]

Step 3 – Removing The Unwanted Dimension
The last section of the script does most of the work. This
will loop through each file in the $files array and

Opens the file1.
Loops through all tags and deletes any <dimension/> tag2.
with a name attribute with a value equal to the $dimName
variable
Saves the file3.

[crayon-5b272f493547c602557087/]

$xml = Get-Content $_.FullName
$node = $xml.SelectNodes(“//dimension”) |
Where-Object {$_.name -eq $dimName} | ForEach-Object {
Remove each node from its parent
[void][/void]$_.ParentNode.RemoveChild($_)
}
$xml.save($_.FullName)
Write-Host “($_.FullName) updated.”
}

Executing The Logic On Composite Forms
The above concepts are exactly the same to apply the same

logic on composite forms files in the LCM. If this is
compared to the script applied to the web forms files, there
are three differences.

The node, or XML tag, that needs to be removed is called1.
sharedDimension, not dimension. (highlighted in red)
The attribute is not name in this instance, but is2.
called dimension. (highlighted in red)
We have added a counter to identify whether the file has3.
the dimension to be removed and only saves the file if
it was altered. (highlighted in green)

The Script
[crayon-5b272f4935483015102987/]

$xml = Get-Content $_.FullName
$node = $xml.SelectNodes(“//sharedDimension“) | Where-Object
{$_.dimension -eq $dimName} | ForEach-Object {
#Increase the counter for each file that matches the criteria
 $fileCount++
Remove each node from its parent
[void][/void]$_.ParentNode.RemoveChild($_)
}
If the dimension was found in the file, save the updated
contents.
 if($fileCount -ge 1) {
$xml.save($_.FullName)
Write-Host “$_.FullName updated.”
 }
}

Summary
The first script may need to be run on multiple plan types,
but the results is an identical folder structure with altered
files that have the identified dimension removed. This can be
zipped and uploaded to Shared Services and used to migrate the

forms to the application that has the dimension removed.

The scripts above can be copied and pasted into PowerShell, or
the code can be Downloaded.

Use PowerShell to split large
files by month/year for data
loads into FDMEE on PBCS
If you are using PBCS, you may run into some challenges with
large files being passed through FDMEE. Whether performance
is an issue or you just want to parse a file my month/year,
this script might save you some time.

The Challenge
I recently had the need to break apart a file. The source
provided one large text file that included 2 years of data
that was needed to populate the history of an employee metrics
application. The current process loaded files by month and we
wanted to be able to piggy back off the existing scripts to
load and process data in FDMEE and the monthly Planning data
pushes to the ASO reporting cube. So, the need break the data
file into seperate files by month and year was required. The
file was delimited and formatted like the following.

Entity,Year,Scenario,Period,Account,Date,Employee,Pay
Code,JobNumber,Data
BU1005,FY15,Actual,Feb,Pay
Amount,02/02/2015,V1398950,P105,,108.10
BU1005,FY15,Actual,Feb,Pay
Amount,02/03/2015,V1398950,P105,,108.92

http://www.in2hyperion.com/wp-content/uploads/2016/12/PowerShell-Remove-LCM-Dimension.txt
http://www.in2hyperion.com/2016/09/02/use-powershell-to-split-large-files-by-monthyear-for-data-loads-into-fdmee-on-pbcs/
http://www.in2hyperion.com/2016/09/02/use-powershell-to-split-large-files-by-monthyear-for-data-loads-into-fdmee-on-pbcs/
http://www.in2hyperion.com/2016/09/02/use-powershell-to-split-large-files-by-monthyear-for-data-loads-into-fdmee-on-pbcs/

The goal was to have a file for every unique month and year
combination that included only the lines of the relevant time
periods. The header of the file also had to exist in each of
the smaller files. Since we were working on a Windows
machine, we used PowerShell to script the solution.

Powershell Script Directions
The script is pretty simple to use and understand. Update the
script as follows.

Create a new text file with a ps1 extension and paste1.
the following into that file.
Update the srcFile variable to point to the file to be2.
parsed.
Update the startYear to the first year in the file to be3.
extracted.
Update the currentYear variable to the last year in the4.
file to be extracted.
Update the ProcessName to a meaningful word or phrase5.
that will be used to create the file name.
Save the file and execute it like any other PowerShell6.
script.

This will produce 12 files for each year with the header line
and the data related to the month and year that represents the
year and month in the file name.

Disclaimer
I welcome feedback on improving performance and will give
credit to anybody that can improve on this. I am NOT an
expert in PowerShell and I am sure there are faster ways to
accomplish this. This created 12 files (1 year / 12 months)
from a file that includes 7.8 million records and completed in
24 minutes. So, this is pretty reasonable for one-off
requests, but might need attention if it was a repeatable
need.

This was developed using PowerShell 5 and some functions do
not work in earlier adoptions of the software.

Powershell Script
[crayon-5b272f49360e4646283583/]
[crayon-5b272f49360ef319896124/]

Conclusion
Hopefully this will benefit the community. As I create more
scripts like this, I plan to share them.

